MECHANISM OF CARDIAC EVENTS IN COMPETITION: WHEN SCREENINGS PREVENT CATASTROPHE

Kevin M. Harris, MD Minneapolis Heart Institute at Abbott-Northwestern Hospital

June 15, 2018

DISCLOSURE

None

OBJECTIVES

- Understand importance of early resuscitation
- Review Incidence and Etiology of Sudden Death in Athletes
- · Clues to detect Heart conditions in Athletes
- Eligibility and Disqualification recommendations for athletes with heart disease

Zeke Upshaw

Emergency action plan/resuscitation/CPR and AED

If absence of P/Resp-initiate resuscitation

Deploy AED and 911

Emergency response plan at venue

Sports-Related Sudden Death in the General Population

Eloi Marijon, MD; Muriel Tafflet, PhD; David S. Celermajer, PhD, FRACP; Florence Dumas, MD; Marie-Cécile Perier, MSc; Hazrije Mustafic, MD; Jean-François Toussaint, MD, PhD; Michel Desnos, MD; Michel Rieu, MD; Nordine Benameur, MD; Jean-Yves Le Heuzey, MD; Jean-Philippe Empana, MD, PhD; Xavier Jouven, MD, PhD

- Majority (93%) of arrests witnessed but Bystander CPR < 1/3
- Survival to discharge best predicted by:
 - Bystander CPR
 - Time from collapse to CPR
 - Initial use of Defibrillator

Annals of Internal Medicine

ORIGINAL RESEARCH

Death and Cardiac Arrest in U.S. Triathlon Participants, 1985 to 2016 A Case Series

Kevin M. Harris, MD; Lawrence L. Creswell, MD; Tammy S. Haas, RN; Taylor Thomas, BS; Monica Tung, BA; Erin Isaacson, BS; Ross F. Garberich, MS; and Barry J. Maron, MD

- 135 deaths/cardiac arrests were compiled for the entire group
- Overall risk 1.74 per 100,000 participants
- 85% were male and the average age was 47 ± 12 years
- 40% of victims were first-time participants
- 44% of autopsies showed cardiovascular abnormalities

Take home implications

- Athlete: risk of competition
 - · Be adequately trained, especially for swim
 - · See Physician regularly
 - · Pre race warm up
- Race/Medical director:
 - · Remind athletes of risks and rest on buoy if needed
 - · Water temperature/wet suit guidelines
 - · Motor vehicle restrictions on roads
 - Expect worst case scenario, ie cardiac arrest with clear cut timely rescue plan, AED readily available
 - · Medical staff available in watercraft and spotters on shore with communication

Table 4 Estimated Mortality Risks	for Young and	d Middle-Aαe	d Participants in Various Sporting Act	ivities Includin	n Triathlon
Table 4. Estimated Mortality Risks for Young and Middle-Aged Participants in Various Sporting Activities, Including Triathlon and Marathon					
Study, Year (Reference)	Country	Study Years	Population	Age Range, y	Risk for Death
Marathon/triathlon					
Kim et al, 2012 (6)	United States	2000-2010	Marathon	22-65	1.0*
Redelmeier and Greenwald, 2007 (8)	United States	1975-2004	Marathon	Mean: 41	0.8*
Harris et al, 2017 (present study)	United States	1985-2016	Triathlon	15-80	1.74*
Young athletes					
Maron et al, 2016 (5)	United States	1980-2006	High school and college athletes	≤39	0.6†
Maron et al, 2013 (25)	United States	1986-2011	High school athletes (Minnesota)	12-18	0.7†
Van Camp et al, 1995 (26)	United States	1983-1993	High school/college athletes	13-22	Men: 0.75† Women: 0.1†
Maron et al, 2009 (27)	United States	1993-2004	High school/college athletes (Minnesota)		0.9†
Holst et al, 2010 (28)	Denmark	2000-2006	Danish athletes	12-35	1.2†
Harmon et al, 2011 (7)	United States	2003-2013	NCAA athletes	17-24	1.86†
Corrado et al, 2006 (29)	Italy	1979-2004	Young athletes (Veneto region)	12-35	1.9†
General athlete population					
Bohm et al, 2016 (30)	Germany	2012-2014	Sports participants (Germany)	10-75	0.12-0.15†
Marijon et al, 2011 (10)	France	2005-2010	Sports participants (France)	10-75	0.46†
Marijon et al, 2015 (31)	United States	2002-2013	Sports participants (Oregon)	35-65	2.17†

Preparticipation Cardiovascular Screening of Competitive Athletes

- Physical exercise is strongly encouraged for its cardiovacular benefits
- · Sudden unexpected deaths, though rare, are tragic and counterintuitive
- There is a need for a screening process which detects the occult diseases

What symptoms should raise alarm at screening?

- Chest pain
 - CV disease prevalence varies by age but critical to recognize in the young
 - Non cardiac causes common
 - Anomalous coronary disease may present with exertional dypsnea
 - · Older athletes, CAD common and may present with warm up angina
 - Need maximal exercise test
- Syncope
 - History may help narrow etiology- complete vs partial consciousness
 - Neurally mediated syncope rare during exertion
 - Stress testing and prolonged ambulatory monitoring may be appropriate

Symptoms (2)

- Palpitations
 - · Sudden palpitations if occur in absence of trigger, more likely to be arrhyththmia
 - · Need to capture with prolonged monitoring
- Impaired exercise tolerance
 - May be subjective or objective
 - Careful evaluation for alternative causes (over training, viral, iron deficiency) but also exclude cardiac etiology
 - Objective determination of exercise capacity,

Hypertrophic cardiomyopathy

- Incidence 1 in 500, Autosomal Dominant
- Most common cause of death in athletes
- 2/3 will have resting/exercise obstruction
- Exertional dyspnea/chest pain

Anomalous coronary

- 2nd most common cause of death
- Syncope/pre syncope most common symptom
- Chest pain less common
- · No physical exam/Ekg findings
- Coronary CTA test of choice

Myocarditis

- 3rd most common (6%) cause of death in young athlete
- Acquired inflammatory heart muscle disease
- Symptoms are non specific/viral and frequently not recognized
- Exercise in acute phase may exacerbate

Arrhythmogenic Right ventricular cardiomopathy (ARVC)

- 4th most common cause of death
- Fibro-fatty infiltration of RV (LV) free wall
- Exercise induced palpitations, presyncope/syncope
- EKG may show epsilon waves, T wave inversion right precordium
- Should not engage in moderate or high intensity sports

Marfan syndrome (Aorta, Mitral valve prolapse)

- Classic Marfan rare connective tissue disease
- Tall stature, skeletal, eye manifestations
- Risk for aorta rupture
- Risk of SD in MVP very rare

AHA Recommendations (14 item)

FAMILY HISTORY OF:

- 1) Premature sudden death < 50 yo
- 2) Heart disease disability < 50 yo
- 3) HCM, DCM, long QT or other ion channelopathies, Marfan syndrome or arrhythmias

PERSONAL HISTORY OF:

- 4) Knowledge of heart murmur
- 5) Systemic hypertension
- 6) Excessive fatigue or exertional shortness of breath
- 7) Exertional syncope
- 8) Exertional chest pain
- 9) Prior sports restriction
- 10) Prior heart testing ordered by MD

PHYSICAL EXAMINATION FOR:

- 11) Heart murmur
- 12) Femoral pulses for coarct
- 13) Stigmata of Marfan Syndrome
- 14) Blood pressure measurement

2014

EKG: Pro and Con

- Pro
- Identification of cardiac disorders at young age
- Shortcomings of H and P
- HCM, Long QT, Brugada, ARVC

- Con
- Large # of athletes
- Expertise in athlete EKG interpretation
- False positive leading to anxiety, disqualification etc
- Costs of downstream testing
- Ethical?

Physiologic ECG changes

- Found in 80% of athletes
 - More prevalent in Males and African/Caribbean
- Training-related ECG changes include:
 - · Sinus Bradycardia
 - First degree and Mobitz type 1 AV block
 - Incomplete RBBB
 - Early Repolarization
 - QRS voltage criteria for LVH

Drezner, Br J Sports Med, 2013

Uncommon ECG changes

(ie deserve further evaluation)

- Non-voltage criteria for LVH
 - LAE or LAD
 - ST depression and T wave inversion
- RAE and RVH
- Q waves
- Complete LBBB
- Ventricular pre-excitation (ie WPW)
- Long QT
- Brugada like ECG
- PVC/NSVT, Heart block, Profound bradycardia, SVT

Masters Screening: Exercise test

- AHA Masters athletes statement recommends ETT if:
 - Symptoms suggestive of CAD
 - Men > 40 or Women > 55 with 1 risk factor
 - ≥ 65 years (even if no risks)

What about community screening efforts?

- More comprehensive than usual H/P
- Low cost
- Volunteer by interested professionals
- Identification of high risk conditions

- Failure to replicate complete evaluation
- Quality control
- Follow up
- False reassurance
- Liability

Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Preamble, Principles, and General Considerations

A Scientific Statement From the American Heart Association and American College of Cardiology

- Task Forces:
- HCM, ARVC, Cardiomyopathies, Myocarditis
- Congenital heart disease
- Valvular heart disease
- Hypertension
- · Aortic disease, including Marfan syndrome
- · Coronary artery disease
- Arrythmias and conduction defects
- Cardiac Channelopathies
- Drugs and Performance enhancing substrates
- Sickle cell trait
- Emergency action plans, Resuscitation, CPR and AED

References

- Marijon et al. Sports related death in the general population. Circulation. 2011;124: 672-681.
- Maron et al. Sudden death in young competitive athletes. Circulation. 2009;119:1085-1092.
- Maron et al. Assessment of the 12 lead EKG as a screening test for detection of cardiovascular disease in healthy general populations of young people. Circulation 2014; 130
- Harris et al. Sudden Deaths and Cardiac Arrests in U.S. Triathlon Participants, 1985-2016: A Case Series. Ann Int Med. 2017 Oct 17;167(8):529-535
- Maron et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnor- malities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American Col- lege of Cardiology. J Am Coll Cardiol 2015;66: 2343–9
- Drezner et al. Electrocardiographic interpretation in athletes: 'the Seattle criteria'. Br J Sports Med 2013;47:122–124
- Baggish et al. Sports Cardiology Core curriculum for providing cardiovascular care to competitive athletes and highly active people. J Am Coll Cardiol 2017;70:1902–18.

TO CONTACT ME

- Kevin M Harris
- 612 863-3900
- Kevin.harris@allina.com

